Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.

Identifieur interne : 000210 ( Main/Exploration ); précédent : 000209; suivant : 000211

Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.

Auteurs : Kaifa Wei [République populaire de Chine] ; Huiqin Chen [République populaire de Chine]

Source :

RBID : pubmed:30497403

Descripteurs français

English descriptors

Abstract

BACKGROUND

The basic helix-loop-helix transcription factors play important roles in diverse cellular and molecular processes. Comparative functional genomics can provide powerful approaches to draw inferences about gene function and evolution among species. The comprehensive comparison of bHLH gene family in different gramineous plants has not yet been reported.

RESULTS

In this study, a total of 183, 231 and 571 bHLHs were identified in rice, maize and wheat genomes respectively, and 1154 bHLH genes from the three species and Arabidopsis were classified into 36 subfamilies. Of the identified genes, 110 OsbHLHs, 188 ZmbHLHs and 209 TabHLHs with relatively high mRNA abundances were detected in one or more tissues during development, and some of them exhibited tissue-specific expression such as TabHLH454-459, ZmbHLH099-101 and OsbHLH037 in root, TabHLH559-562, - 046, - 047 and ZmbHLH010, - 072, - 226 in leaf, TabHLH216-221, - 333, - 335, - 340 and OsbHLH005, - 141 in inflorescence, TabHLH081, ZmbHLH139 and OsbHLH144 in seed. Forty five, twenty nine and thirty one differentially expressed bHLHs were respectively detected in wheat, maize and rice under drought stresses using RNA-seq technology. Among them, the expressions of TabHLH046, - 047, ZmbHLH097, - 098, OsbHLH006 and - 185 were strongly induced, whereas TabHLH303, - 562, ZmbHLH155, - 154, OsbHLH152 and - 113 showed significant down-regulation. Twenty two TabHLHs were induced after stripe rust infection at 24 h and nine of them were suppressed at 72 hpi, whereas 28 and 6 TabHLHs exhibited obviously down- and up-regulation after powdery mildew attack respectively. Forty one ZmbHLHs were differentially expressed in response to F. verticillioides infection. Twenty two co-expression modules were identified by the WGCNA, some of which were associated with particular tissue types. And GO enrichment analysis for the modules showed that some TabHLHs were involved in the control of several biological processes, such as tapetal PCD, lipid metabolism, iron absorption, stress responses and signal regulation.

CONCLUSION

The present study identifies the bHLH family in rice, maize and wheat genomes, and detailedly discusses the evolutionary relationships, expression and function of bHLHs. This study provides some novel and detail information about bHLHs, and may facilitate understanding the molecular basis of the plant growth, development and stress physiology.


DOI: 10.1186/s12870-018-1529-5
PubMed: 30497403
PubMed Central: PMC6267037


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.</title>
<author>
<name sortKey="Wei, Kaifa" sort="Wei, Kaifa" uniqKey="Wei K" first="Kaifa" last="Wei">Kaifa Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000, Fujian, China. kaifa-wei@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000, Fujian</wicri:regionArea>
<wicri:noRegion>Fujian</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Huiqin" sort="Chen, Huiqin" uniqKey="Chen H" first="Huiqin" last="Chen">Huiqin Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Tsinghua University, Beijing, 100084, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Tsinghua University, Beijing, 100084</wicri:regionArea>
<wicri:noRegion>100084</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30497403</idno>
<idno type="pmid">30497403</idno>
<idno type="doi">10.1186/s12870-018-1529-5</idno>
<idno type="pmc">PMC6267037</idno>
<idno type="wicri:Area/Main/Corpus">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000143</idno>
<idno type="wicri:Area/Main/Curation">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000143</idno>
<idno type="wicri:Area/Main/Exploration">000143</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.</title>
<author>
<name sortKey="Wei, Kaifa" sort="Wei, Kaifa" uniqKey="Wei K" first="Kaifa" last="Wei">Kaifa Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000, Fujian, China. kaifa-wei@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000, Fujian</wicri:regionArea>
<wicri:noRegion>Fujian</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Huiqin" sort="Chen, Huiqin" uniqKey="Chen H" first="Huiqin" last="Chen">Huiqin Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Tsinghua University, Beijing, 100084, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Tsinghua University, Beijing, 100084</wicri:regionArea>
<wicri:noRegion>100084</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (physiology)</term>
<term>Basic Helix-Loop-Helix Transcription Factors (genetics)</term>
<term>Basic Helix-Loop-Helix Transcription Factors (physiology)</term>
<term>Conserved Sequence (genetics)</term>
<term>Dehydration (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Genome, Plant (physiology)</term>
<term>Genomics (MeSH)</term>
<term>Oryza (genetics)</term>
<term>Oryza (physiology)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Triticum (genetics)</term>
<term>Triticum (physiology)</term>
<term>Zea mays (genetics)</term>
<term>Zea mays (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (physiologie)</term>
<term>Déshydratation (MeSH)</term>
<term>Facteurs de transcription à motif basique hélice-boucle-hélice (génétique)</term>
<term>Facteurs de transcription à motif basique hélice-boucle-hélice (physiologie)</term>
<term>Génome végétal (génétique)</term>
<term>Génome végétal (physiologie)</term>
<term>Génomique (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oryza (génétique)</term>
<term>Oryza (physiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence conservée (génétique)</term>
<term>Transcriptome (MeSH)</term>
<term>Triticum (génétique)</term>
<term>Triticum (physiologie)</term>
<term>Zea mays (génétique)</term>
<term>Zea mays (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Basic Helix-Loop-Helix Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Conserved Sequence</term>
<term>Genome, Plant</term>
<term>Oryza</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Facteurs de transcription à motif basique hélice-boucle-hélice</term>
<term>Génome végétal</term>
<term>Oryza</term>
<term>Séquence conservée</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Facteurs de transcription à motif basique hélice-boucle-hélice</term>
<term>Génome végétal</term>
<term>Oryza</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Basic Helix-Loop-Helix Transcription Factors</term>
<term>Genome, Plant</term>
<term>Oryza</term>
<term>Triticum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dehydration</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genomics</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Déshydratation</term>
<term>Génomique</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The basic helix-loop-helix transcription factors play important roles in diverse cellular and molecular processes. Comparative functional genomics can provide powerful approaches to draw inferences about gene function and evolution among species. The comprehensive comparison of bHLH gene family in different gramineous plants has not yet been reported.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, a total of 183, 231 and 571 bHLHs were identified in rice, maize and wheat genomes respectively, and 1154 bHLH genes from the three species and Arabidopsis were classified into 36 subfamilies. Of the identified genes, 110 OsbHLHs, 188 ZmbHLHs and 209 TabHLHs with relatively high mRNA abundances were detected in one or more tissues during development, and some of them exhibited tissue-specific expression such as TabHLH454-459, ZmbHLH099-101 and OsbHLH037 in root, TabHLH559-562, - 046, - 047 and ZmbHLH010, - 072, - 226 in leaf, TabHLH216-221, - 333, - 335, - 340 and OsbHLH005, - 141 in inflorescence, TabHLH081, ZmbHLH139 and OsbHLH144 in seed. Forty five, twenty nine and thirty one differentially expressed bHLHs were respectively detected in wheat, maize and rice under drought stresses using RNA-seq technology. Among them, the expressions of TabHLH046, - 047, ZmbHLH097, - 098, OsbHLH006 and - 185 were strongly induced, whereas TabHLH303, - 562, ZmbHLH155, - 154, OsbHLH152 and - 113 showed significant down-regulation. Twenty two TabHLHs were induced after stripe rust infection at 24 h and nine of them were suppressed at 72 hpi, whereas 28 and 6 TabHLHs exhibited obviously down- and up-regulation after powdery mildew attack respectively. Forty one ZmbHLHs were differentially expressed in response to F. verticillioides infection. Twenty two co-expression modules were identified by the WGCNA, some of which were associated with particular tissue types. And GO enrichment analysis for the modules showed that some TabHLHs were involved in the control of several biological processes, such as tapetal PCD, lipid metabolism, iron absorption, stress responses and signal regulation.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The present study identifies the bHLH family in rice, maize and wheat genomes, and detailedly discusses the evolutionary relationships, expression and function of bHLHs. This study provides some novel and detail information about bHLHs, and may facilitate understanding the molecular basis of the plant growth, development and stress physiology.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30497403</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.</ArticleTitle>
<Pagination>
<MedlinePgn>309</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1529-5</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The basic helix-loop-helix transcription factors play important roles in diverse cellular and molecular processes. Comparative functional genomics can provide powerful approaches to draw inferences about gene function and evolution among species. The comprehensive comparison of bHLH gene family in different gramineous plants has not yet been reported.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, a total of 183, 231 and 571 bHLHs were identified in rice, maize and wheat genomes respectively, and 1154 bHLH genes from the three species and Arabidopsis were classified into 36 subfamilies. Of the identified genes, 110 OsbHLHs, 188 ZmbHLHs and 209 TabHLHs with relatively high mRNA abundances were detected in one or more tissues during development, and some of them exhibited tissue-specific expression such as TabHLH454-459, ZmbHLH099-101 and OsbHLH037 in root, TabHLH559-562, - 046, - 047 and ZmbHLH010, - 072, - 226 in leaf, TabHLH216-221, - 333, - 335, - 340 and OsbHLH005, - 141 in inflorescence, TabHLH081, ZmbHLH139 and OsbHLH144 in seed. Forty five, twenty nine and thirty one differentially expressed bHLHs were respectively detected in wheat, maize and rice under drought stresses using RNA-seq technology. Among them, the expressions of TabHLH046, - 047, ZmbHLH097, - 098, OsbHLH006 and - 185 were strongly induced, whereas TabHLH303, - 562, ZmbHLH155, - 154, OsbHLH152 and - 113 showed significant down-regulation. Twenty two TabHLHs were induced after stripe rust infection at 24 h and nine of them were suppressed at 72 hpi, whereas 28 and 6 TabHLHs exhibited obviously down- and up-regulation after powdery mildew attack respectively. Forty one ZmbHLHs were differentially expressed in response to F. verticillioides infection. Twenty two co-expression modules were identified by the WGCNA, some of which were associated with particular tissue types. And GO enrichment analysis for the modules showed that some TabHLHs were involved in the control of several biological processes, such as tapetal PCD, lipid metabolism, iron absorption, stress responses and signal regulation.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The present study identifies the bHLH family in rice, maize and wheat genomes, and detailedly discusses the evolutionary relationships, expression and function of bHLHs. This study provides some novel and detail information about bHLHs, and may facilitate understanding the molecular basis of the plant growth, development and stress physiology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Kaifa</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and Biotechnology, Minnan Normal University, 36 Xian-Qian-Zhi Street, Zhangzhou, 363000, Fujian, China. kaifa-wei@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Huiqin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Tsinghua University, Beijing, 100084, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051792">Basic Helix-Loop-Helix Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051792" MajorTopicYN="N">Basic Helix-Loop-Helix Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Expression regulation</Keyword>
<Keyword MajorTopicYN="N">Gramineous crops</Keyword>
<Keyword MajorTopicYN="N">Growth and development</Keyword>
<Keyword MajorTopicYN="N">Stress responses</Keyword>
<Keyword MajorTopicYN="N">bHLHs</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30497403</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1529-5</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1529-5</ArticleId>
<ArticleId IdType="pmc">PMC6267037</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dev Cell. 2014 Feb 24;28(4):438-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24576426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1398-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20472752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1167-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 May 30;17(1):90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28558686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Feb;25(2):744-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):94-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2007 May;71(5):1183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2003 Jul;118(2-3):251-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12868614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2016 Feb;291(1):129-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Sep;163(1):291-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Apr;27(4):862-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19942615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Nov 21;17(1):946</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27871222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 15;5:11244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26174967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(6):907-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21332845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jan;16(1):19-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20833098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Aug 25;15:710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25155950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3582-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22334645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Dec;84(6):1100-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26506081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Oct 15;15:898</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25318379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Feb 13;10(2):274-284</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27890635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Nov;192(3):713-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21793828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2013 Jun 01;10:173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23725024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Dec;130(26):6431-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14627722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Mar;232:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25617318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Apr;170(4):2478-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26921305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2016 Nov;35(11):2309-2323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27541276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2016 Jul;104:99-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27107183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Sep;25(9):3360-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1994 Apr 15;8(8):970-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7926781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3033-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):2989-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Mar;6(2):503-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Jul;18(7):756-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18427573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Aug 11;10:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jun;202(4):1126-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24571056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2016 Sep;11(9):1650-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27560171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2017 Jul;160(3):312-327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2015 Nov 23;35(4):432-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(5):816-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21801252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2219-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20675571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):669-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3555-E3562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28396418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28964-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16867983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Feb 05;16:39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25652024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Jun 3;26(6):2486-2504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24894043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):692-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25827016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jul;67(14):4231-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27262126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 Aug;134(16):2959-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015 Feb 10;16:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25853487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Apr;28(4):855-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27073231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23385589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11765-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13130077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jun;111(6):1021-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 30;4:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24416038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jun 14;11(6):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 25;6:170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25859250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Aug;25(8):3117-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23943862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jan 22;16:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25612924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jan 10;18(2):344-351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28076780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2013 Feb;250(1):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22456953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2016 Oct;33:42-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27314622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Aug;49(8):1237-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 14;9(7):e102303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25019620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Sep 10;525(7568):269-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26258305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Dec;21(12):3767-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20009022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1749-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2017 Apr;113:78-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28189052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 Jun 18;6(280):ra48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23779086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Apr 1;30(7):923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2014 Feb;289(1):77-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24241166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Dec;14(12):2228-2239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27155533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):736-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17885086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Mar;170(3):1831-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26829979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2999-3014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17138695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 8;464(7290):913-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20220754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jun 10;7:11868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27282989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 Oct;134(20):3593-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 May;23(5):1795-814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Jul 30;6:256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breed Sci. 2012 Jun;62(2):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23136524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27382177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wei, Kaifa" sort="Wei, Kaifa" uniqKey="Wei K" first="Kaifa" last="Wei">Kaifa Wei</name>
</noRegion>
<name sortKey="Chen, Huiqin" sort="Chen, Huiqin" uniqKey="Chen H" first="Huiqin" last="Chen">Huiqin Chen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000210 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000210 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30497403
   |texte=   Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30497403" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020